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ABSTRACT
Semantics has gained much attention in the last few years
and new advanced crossover and mutation operations have
been created which use semantic information to improve the
quality and generalisability of individuals in genetic pro-
gramming. In this paper we present a new selection operator
in grammatical evolution which uses semantic information
of individuals instead of just the fitness value. The semantic
traits of an individual are stored in a vector. An unsuper-
vised learning technique is used to cluster individuals based
on their semantic vector. Individuals are only allowed to
reproduce with individuals from the same cluster to pre-
serve semantic locality and intensify the search in a certain
semantic area. At the same time, multiple semantic areas
are covered by the search as there exist multiple clusters
which cover different areas and therefore preserve semantic
diversity. This new selection operator is tested on several
symbolic regression benchmark problems and compared to
grammatical evolution with tournament selection to analyse
its performance.
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1. INTRODUCTION
Evolutionary algorithms are inspired by nature. Espe-

cially the phrase “survival of the fittest” is used in many
papers and reflects how most selection methods work. Fit-
ter individuals are selected more often. This is mainly done,
by using a single fitness value, which defines how fit an in-
dividual is.

Another important aspect for some natural computing al-
gorithms, like Particale Swarm Optimization (PSO) [14] or
Ant Colony Optimization [7], is social learning. In PSO,
a real-valued vector is used as representation for a possi-
ble solution, where each value in the vector corresponds to
a parameter of the problem. The algorithm is inspired by
the flocking behaviour of birds. The movement of an in-
dividual influences the behaviour of the other individuals.
Ant-colony inspired algorithms construct solutions by plac-
ing pheromones in the environment which attract individu-
als to possible better regions. These interactions in swarm
and ant-colony algorithms are used to exchange informa-
tion to influence the actions taken in the next iterations to
move closer to an optimal solution. In nature phenotypic
traits influence the social interactions between individuals
and therefore the transmission of genetic material.

In this paper, we introduce a social selection mechanism
named Semantic-Clustering Selection (SCS), which uses se-
mantic information in form of a (semantic) vector as a sur-
rogate for phenotypic traits. In contrary to most existing
selection methods, SCS does not solely focus on the fitness
value but also considers the semantic similarity between in-
dividuals. Individuals which have more phenotypic traits in
common are considered to be more attracted to each other
and therefore more likely to mate. As traits are inherited by
their children, the children may be similar to their parents,
thus in the same area of the search space, but hopefully
better. This is inspired also by earlier work by Uy et al.
[23] which highlighted the importance of semantic locality
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and diversity. Locality is preserved by restricting selection
to individuals in the same cluster and semantic diversity is
preserved by evolving multiple clusters in the population.
The benefits of this operator are that it can be integrated
within any evolutionary algorithm which uses selection. Fur-
thermore, in contrast to geometric semantic operators which
leads to bigger individuals than standard operators, SCS
does not influence the size of individuals. As SCS uses a se-
mantic vector for clustering, it does not have to be changed
for a specific problem, while geometric semantic operators
have to be defined differently for every type of problem.

In this paper, we provide some background in section 2
and a description of SCS in section 3. SCS is tested on
several symbolic regression benchmark problems. The ex-
perimental settings are given in section 4 and the results in
section 5. At the end of the paper, we provide a conclusion
of the new operator in section 6 and a prospect of future
work in section 7.

2. BACKGROUND

2.1 Grammatical Evolution
Grammatical Evolution (GE) like other evolutionary al-

gorithms uses selection, crossover and mutation to evolve
solutions for arbitrary problems [20, 6]. GE in general only
evolves an integer string [12]. A mapping process uses these
integers with a grammar to generate a corresponding solu-
tion. This mapping process makes GE flexible, because GE
can generate solutions/programs for a problem, as long as a
grammar can be defined for it. Whereas, for other evolution-
ary algorithms you may have to implement a new solution
representation instead of simply exchanging a grammar. An-
other aspect of GE is that its mapping process is inspired
by molecular biology. The integer string can be seen as the
genotype of an individual, while the mapped program can be
seen as the phenotype that is created by mapping the geno-
type according to rules defined in the grammar. During the
evolution new integer strings (genotypes) are generated by
crossover and may be mutated, which has an effect on the
phenotype produced in the mapping.

GE has already been used to evolve programs for many
different kinds of problems, such as creating truss design
[8], optimising pylon structures [4], evolving aircraft mod-
els [3], controlling femtocell network coverage [11] and has
shown competitive results to other evolutionary algorithms
like genetic programming [20]. In this paper, GE is used to
compare a new selection method Semantic-Clustering Selec-
tion (SCS) against tournament selection, which is currently
the most common used selection method in the literature for
GE and genetic programming (GP).

2.2 Semantics
Semantics has gained much interest over the last years

in the field of GP [22], [18]. Many operators and methods
based on semantics have been introduced. Semantics has
been used to provide additional information of an individual
to guide and improve the search process of the evolutionary
algorithm. In contrary to the syntax which is the structure
of an individual, semantic defines ”the behavior of a pro-
gram, once it is executed on a set of data” [25]. Lets assume
that two individuals are given for a regression problem with
two input variables x and y:

f1(x, y) = x ∗ y ∗ 2 + x (1)

f2(x, y) = (x + x) ∗ y + x (2)

These formulae are syntactically different, but semanti-
cally identical as they produce the same output if the same
input is given. This differentiation between syntax and se-
mantics is important. Individuals with the same semantics
have the same fitness, but can have different syntax. There-
fore their genotype is different and so different genetic code
can be contributed to the next generation by semantically
identical individuals. This is not the case for syntactically
identical individuals.

Previously, semantics have been used with GE through
the use of attributed grammar to solve 01 multi-constrained
knapsack problems [5]. Also several operators, mainly cross-
over and mutation operators, based on semantics have al-
ready been introduced, which produce better results than
more common genetic operators. Nguyen et al. presented
a semantic aware crossover operation [19] to exchange se-
mantically similar subtrees of individuals. This operator
has been slightly improved several times (e.g. [22], [24]).
An example of a semantic mutation operator is Beadle and
Johnson’s semantic driven mutation [2], which replaces a
subtree with a semantically different one. Another approach
to semantics is to use the convexity of the semantic search
space. This has been done with geometric semantic genetic
programming (GSGP) [18]. GSGP uses the whole structure
of the parents plus some random trees and combines them
to let the children outperform their parents. The disadvan-
tage of this approach is that the size of individuals increases
drastically per generation. The huge size of the individuals
makes this approach unusable in practice and the opera-
tors are restricted to specific domains (boolean, regression
and simple program induction [i.e. if-then-else statements]).
Therefore, it cannot be applied to the more general form of
GP for program induction.

2.3 Selection methods
Tournament selection is the typical selection method in

the literature for GP and GE. It randomly selects a certain
number of individuals which participate in a tournament.
The fittest individual of a tournament is selected for repro-
duction. An advantage of tournament selection is that the
selection pressure is directly controlled by the tournament
size. A high tournament size leads to high selection pressure,
whereas a low tournament size indicates low selection pres-
sure. As many other selection mechanisms, like linear rank
or proportional selection, tournament selection uses only the
fitness value to determine which individual gets selected.

Other selection methods like gender specific selection [1]
or sexual selection [10] differentiate between male and fe-
male individuals. Different selection mechanisms are used
to select a female individual and an appropriate male for
reproduction.

An example of an improved tournament selection is, cor-
relative tournament selection [17]. It selects the first in-
dividual with a normal tournament selection. But for the
second individual, n individuals are randomly selected and
the syntactic similarity is calculated between the first and
the n individuals. The most similar one is then used for
reproduction with the first one.
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clusters ← cluster(previous population)
while next population is not full do

first parent ← tournament selection(previous popula-
tion)
add first parent to next population
cluster ← get cluster of parent(clusters, first parent)
second parent ← tournament selection(cluster)
add second parent to next population

end while

Figure 1: Semantic-Clustering Selection pseudocode

SCS, which is presented in section 3, is similar to correl-
ative tournament selection, but there are two main differ-
ences. First, SCS calculates similarity based on the seman-
tics of an individual, rather than on the genotype. Secondly,
SCS does not randomly select n individuals, but uses clus-
tering to create a pool of possible mates.

2.3.1 Semantics in selection
Galvan-Lopez et al. have presented a selection method

based on semantics which is called semantics in selection
(SiS) [9]. It improves tournament selection by selecting two
semantically different parents for crossover. So the first par-
ent is selected with a normal tournament which only uses the
fitness of the individuals. The second tournament checks
that the individual is semantically different and then it se-
lects the individual with the best fitness of the semantically
different individuals of the current tournament. Galvan-
Lopez et al. argue that GP with SiS promotes genetic di-
versity and present impressive advantages over standard GP.
The experimental settings used in that paper do not use mu-
tation. GP with SiS may not need mutation, due to the fact
that SiS promotes diversity, but standard GP may prema-
turely converge if mutation is not used. Additionally, the
tournament size was set to 7 throughout all experiments,
independent of the population size. Three different popula-
tion sizes have been used for the experiments, 126, 250 and
500. SiS promotes semantic diversity, therefore GP with SiS
may not be affected as much as GP without SiS by the high
selection pressure due to the big tournament size and that
no mutation is used. Thus, the experimental settings might
have been favourable for GP with SiS. Additionally, Galvan-
Lopez et al. did not consider semantic locality, which has
been shown to provide a performance advantage [23].

3. SEMANTIC-CLUSTERING SELECTION
In this section we present a new selection method, named

Semantic-Clustering Selection (SCS) which uses semantic
information to explore different areas of the search space
while intensifying the search in these areas. It aims to bal-
ance semantic locality and diversity. The idea is to create a
vector which contains semantic information for every indi-
vidual. Afterwards, individuals are clustered based on this
vector by a clustering algorithm. These clusters define the
different areas of the search space which are currently ex-
plored. Then tournament selection is used to select indi-
viduals for reproduction. The first parent is selected from
the whole population, while the second parent has to be
an individual which is semantically similar to the first one.
Therefore, it is selected from the same cluster as the first
parent. The pseudocode of SCS is depicted in algorithm 1.

The goal is to only mate semantically similar parents with
another, to improve the fitness of a specific area of the search
space. At the same time, because several clusters are cre-
ated within a population, the population does not converge
towards a single best individual or area, but rather towards
several areas. This should improve the robustness of the
search process as it should be more likely to find a good
solution when covering several promising areas.

The semantic output of an individual depends on the
problem that is tackled. In this paper, we analyse the perfor-
mance of SCS on symbolic regression problems. Therefore,
the semantic output can be defined as the output of the func-
tions produced by the individuals and we use the semantic
distance measure, proposed by Uy et al [22], for calculating
the distance between two individuals. But instead of ran-
domly sampled values for the distance measure, the fitness
cases of the problems were used. The distance measure is
used for clustering.

In contrary to geometric semantic operators which create
huge models which are not practical, SCS only uses semantic
information for selection. It can be easily be integrated in
any evolutionary algorithm which uses a selection operator.

4. EXPERIMENTAL SETTING
For the experiments with SCS, we used k-means [16] for

clustering. K-means initializes k points, called centroids,
within given observations, which are going to be clustered.
It then iteratively executes two steps. The assignment step
assigns the observations to the closest centroid. Every ob-
servation which is assigned to the same centroid belongs to
the same cluster. The update step sets every centroid to
the center of its cluster by calculating the mean over all the
observations, which are assigned to the centroid. The steps
are repeated until k-means converges, which means that the
centroids have not been moved any more, or until a specified
number of iterations is reached.

As you need to specify the number of clusters for k-means
as well as initialize the centroids, several different settings
are being tested. For the number of clusters, the values
2, 5, 10 and 20 are being analysed. The reason for also
using a large amount of clusters like 20 is that initial experi-
ments showed that outliers influence the clustering and some
clusters may then only contain 1 individual or a very small
number of individuals. By using a large number of clusters
we expect to at least get some appropriate sized clusters.
As for initializing the centroids, we use three different ap-
proaches. The first approach is to randomly initialize the
centroids with the values of an individual. The second is to
use the semantic vector of the k best individuals. For the
last approach, the semantic distance to the target is calcu-
lated and the individuals are sorted accordingly. The initial
centroids are the k individuals furthest apart in this sorting.
For example, if k = 2, then the semantic vectors of the in-
dividual closest and furthest from the target are used as the
initial centroids.

We tested SCS on the following well known regression
problems, Keijzer-6 [13], Nguyen-7 [22], Pagie-1 [21] and
Vladislavleva-4 [26], proposed as good benchmarks by White
et al. [27]. Also only the training set was used for evalu-
ation. The grammar contained all operators suggested for
the specific problem, but only 1.0 as constant. Single point
crossover and int flip mutation have been used as opera-
tors. A summary of the parameter settings can be found in
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Table 1: Experimental parameter settings
Runs 30

Generations
200

(400 for Pagie-1)
Population size 500

Tournament size 5 (adapted)
Crossover probability 0.9
Mutation probability 0.05

Elite size 1
Maximum clustering iterations 50

Number of clusters 2, 5, 10, 20

table 1. The number of generations was set to 200 for all
problems except for Pagie-1, because neither standard GE
nor GE with SCS have converged after 200 generations for
this problem. Therefore, the number of generations was in-
creased to 400 for this problem. The general tournament size
was set to 5, which is 1% of the whole population. When
an individual from a cluster was selected, the tournament
size was adapted to the size of the cluster. E.g. for a clus-
ter of size 270, the tournament size would be 2.7, which is
rounded to 3. A minimum tournament size was set to 2, in
case of small clusters, to avoid random search and maintain
a certain amount of selection pressure.

The results of SCS with the different initialization strate-
gies and cluster sizes are compared to standard GE with
tournament selection, as well as to SiS based on [9]. For all
the experiments the same settings were used.

5. RESULTS
In this section we present the results of our experiments

in table 2 and table 3. These tables show the average best
fitness as well as the standard deviation of the average best
fitness of 30 runs. Fitness is measured as the mean squared
error to the target function. Therefore, a value closer to 0
is better. Table 2 shows the results of standard GE with
tournament selection and the results of GE with SiS. Table
3 summarizes the results of the experiments with SCS with
the three different initialization strategies and the different
number of clusters.

5.1 Semantics in selection
At first, we take a look at the results of SiS shown in table

2. The problem Nguyen-7 has also been used in the paper
that presented SiS, but was named F6 [9]. In general the re-
sults of SiS are very similar compared to standard GE. SiS
is in most cases slightly worse than standard GE. In case
of Keijzer-6 there is even a significant difference. This con-
tradicts the findings in [9]. The reason might be that the
parameter settings differ from the original settings for SiS.
Thus, we also run experiments with SiS and standard GE
with the settings from [9]. On the one hand, SiS is always
better than standard GE when using the original settings.
On the other hand, as expected and described in section 2,
the results for both SiS and standard GE are worse than
the results presented here, due to the high selection pres-
sure and not using mutation. In the end, GE and GP are
different systems. Maybe SiS would have performed better
than tournament selection in GP.

5.2 Semantic-Clustering Selection
Three different initialization strategies and four different

number of clusters are used for SCS. In total, 12 different
settings are compared to standard GE. We have used all
these different settings, not to give SCS an unfair advantage,
but to see the effects of different settings possible in SCS.

As can be seen in table 3, not a single setting is better on
all problems than standard GE. Actually, standard GE per-
forms better on Keijzer-6 than SiS and any SCS setting. If
we take a look at the other problems, many settings perform
slightly better than standard GE, but in general all results
are pretty similar. No statistical significant results have been
achieved with SCS. Further, no general best setting for SCS
has been found on this problems. Different settings perform
better on different problems. Even if we only compare the
initialization strategies or number of clusters, no clear best
setting can be found. Nevertheless, SCS was able to achieve
better results on 3 of the 4 problems, which are most of the
times even more robust.

To analyse the behaviour of SCS, we measured several at-
tributes of the clustering and the selection. One measure was
the average size of the biggest cluster over the generations.
The results mainly suggested that one cluster is dominating
the others, especially with a small number of clusters. Addi-
tionally, the more training points a problem has the bigger
the dominating cluster gets. Clustering in such an high di-
mensional space is rather difficult, which may lead to these
results. A higher number of clusters might be beneficial to
get a meaningful clustering. We do not provide plots of the
cluster sizes because they only show that a higher number
of clusters reduces the size of the biggest cluster.

Another measure we used, which shows more interesting
data, is the distance between two parents that have been
selected for reproduction. The semantic vectors of the par-
ents that are selected to create children together are used
with the Canberra distance [15] to calculate how similar the
parents are. The Canberra distance is shown in equation 3.

d(p, q) =

n∑
i=1

|pi − qi|
|pi|+ |qi|

(3)

We adapted the distance measure to be normalized by
the length of the semantic vector to receive a number in
the interval [0, 1], see equation 4. p and q are the semantic
vectors of the two parents. Note that when two vectors are
similar, the result will be closer to 0.

d(p, q) =
1

n

n∑
i=1

|pi − qi|
|pi|+ |qi|

(4)

The measurements of pairwise similarity of parents for the
’random’ initialization strategy is shown in figure 2. As ex-
pected, in most cases it shows that the more clusters we
use the more similar the parents will be that are selected to
reproduce together. Another observation that can be made
is that for the easier problems Keijzer-6 and Nguyen-7, the
similarity stays rather constant, except from an initial spike.
In case of Pagie-1 and Vladislavleva-4, where the fitness is
not as good as for the other two problems, the similarity
seems to decrease slowly after the 20th generation. Maybe
the number of semantic diverse individuals which are able
to achieve similar fitness increases over time. Further in-
vestigation is necessary to fully understand this phenom-
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Table 2: Results of standard GE and GE with SiS. Columns denoted with a *-sign have used the settings
from [9].

SiS SiS* SiS* SiS* standard GE
Pop 126 Gen 200 Pop 250 Gen 100 Pop 500 Gen 50

Keijzer-6 0.00434± 0.00303 0.02551± 0.02756 0.01510± 0.02119 0.01234± 0.00785 0.00248± 0.00164
Nguyen-7 0.00039± 0.00037 0.00587± 0.00797 0.00387± 0.00626 0.00243± 0.00279 0.00036± 0.00044
Pagie-1 0.07493± 0.03859 0.27599± 0.10906 0.27499± 0.12715 0.30191± 0.11503 0.06538± 0.04562
Vladislavleva-4 0.03759± 0.00356 0.04835± 0.03594 0.04188± 0.00509 0.04028± 0.00413 0.03789± 0.00354

Table 3: Results of Semantic-Clustering Selection (SCS). ”random”, ”best”, ”distance” means the initialization
strategy of k-means, as explained in the first paragraph of section 4. The number indicates the number of
clusters used. The results of standard GE are always in rightmost column for an easier comparison.

SCS random 2 SCS best 2 SCS distance 2 standard GE

Keijzer-6 0.00311± 0.00208 0.00364± 0.00245 0.00331± 0.00287 0.00248±0.00164

Nguyen-7 0.00035± 0.00039 0.00031± 0.00036 0.00040± 0.00041 0.00036± 0.00044

Pagie-1 0.05928± 0.03895 0.07893± 0.05429 0.05991± 0.03210 0.06538± 0.04562

Vladislavleva-4 0.03761± 0.00329 0.03707± 0.00384 0.03802± 0.00281 0.03789± 0.00354

SCS random 5 SCS best 5 SCS distance 5 standard GE

Keijzer-6 0.00379± 0.00262 0.00417± 0.00265 0.00327± 0.00259 0.00248±0.00164

Nguyen-7 0.00046± 0.00062 0.00033± 0.00039 0.00032± 0.00031 0.00036± 0.00044

Pagie-1 0.05538± 0.02933 0.06609± 0.03373 0.05851± 0.02758 0.06538± 0.04562

Vladislavleva-4 0.03800± 0.00298 0.03750± 0.00329 0.03830± 0.00399 0.03789± 0.00354

SCS random 10 SCS best 10 SCS distance 10 standard GE

Keijzer-6 0.00347± 0.00270 0.00376± 0.00242 0.00340± 0.00257 0.00248±0.00164

Nguyen-7 0.00051± 0.00046 0.00035± 0.00038 0.00038± 0.00037 0.00036± 0.00044

Pagie-1 0.05795± 0.03528 0.06634± 0.03873 0.07575± 0.04538 0.06538± 0.04562

Vladislavleva-4 0.03811± 0.00412 0.03675± 0.00333 0.03720± 0.00360 0.03789± 0.00354

SCS random 20 SCS best 20 SCS distance 20 standard GE

Keijzer-6 0.00358± 0.00297 0.00309± 0.00181 0.00284± 0.00207 0.00248±0.00164

Nguyen-7 0.00030± 0.00032 0.00036± 0.00038 0.00053± 0.00047 0.00036± 0.00044

Pagie-1 0.06669± 0.03332 0.05996± 0.03441 0.07231± 0.04177 0.06538± 0.04562

Vladislavleva-4 0.03770± 0.00352 0.03718± 0.00263 0.03792± 0.00445 0.03789± 0.00354

ena. Lastly, the initial generation is generated randomly by
ramped half-and-half, which explains why selection in the
first generation selects rather dissimilar parents and why the
similarity increases afterwards. But it is interesting that in
all 4 problems in the first 10 generations right after the in-
crease, there is a spike where similarity rapidly decreases
and right afterwards increases again.

Although in most problems the pairwise similarity of par-
ents selected for reproduction increases if more clusters are
used, this is not always the case. Especially for Vladislavleva-
4, a difference can be seen, also when changing the initializa-
tion strategy for the clusters, as depicted in figure 3 where
the y axis has been set to show values between 0 and 0.1.
While SCS with 5 clusters selects the most similar parents
with ’best’, it selects the most dissimilar parents when ’ran-
dom’ is used, compared to the other number of clusters.

6. CONCLUSION
In this paper we presented a new selection method Semantic-

Clustering Selection based on semantics, which uses unsu-

pervised learning techniques to cluster individuals based on
their semantic similarity. Individuals are then limited to
only reproduce with another inside these clusters to inten-
sify the search process inside each cluster while several areas
of the search space are covered. The selection method SCS
was tested on several regression problems and compared to
standard GE as well as to SiS presented in [9], which is an-
other selection method which uses semantics. The presented
results show that SCS is a promising method which is able
to perform better than standard GE and that it makes the
search process more robust.

7. FUTURE WORK
In this paper, SCS was only applied to symbolic regres-

sion. The high dimensional space makes it difficult to create
meaningful clusters. In the future, we will try to use only
a subset of the trainings data points to decrease the dimen-
sionality for the clustering. We are also going to analyse the
behaviour of SCS on other types of problems like boolean
or classification problems. Additionally, SCS was only used
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Figure 2: Average Canberra distance of parents over the generations. Note the different ranges on the y axis.
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Figure 3: Average Canberra distance of parents over the generations for Valdislavleva-4 with ’best’ and
’random’ initialization strategy.
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with k-means. As already stated, any clustering algorithm
can be used. K-means is a rather simple algorithm and the
number of clusters has to be predefined. In the future, we
will test SCS with more advanced clustering algorithms and
even with algorithms which are able to determine an ap-
propriate number of clusters by themselves. The semantic
distance measure we used might not be optimal for cluster-
ing in such a high dimensional space. We may also have
to consider other measures. Furthermore, as a next step to
improve SCS, analysing clusters and how they influence the
search processes might give better insight in the selection
method. How do clusters change over time? How often does
migration of individuals to other clusters happen? SCS may
not influence the size of the clusters, but it might influence
how the centroids of the clusters move through the search
space. All the answers of these questions might help us to
improve the selection process and the already promising re-
sults of SCS.
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O’Reilly, and S. Luke. Better gp benchmarks:
Community survey results and proposals. Genetic
Programming and Evolvable Machines, 14(1):3–29,
Mar. 2013.

1284




